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Abstract-Linearized heat transfer between two parallel plates is considered for inverse Knudsen numbers 
ranging from 0 to 10. The Bhatnagar, Gross and Krook model is used and transformed into a couple 
of integral equations for density and temperature. These equations are solved numerically. Besides 
a variational calculation of the solution is made by introducing simple trial functions in a suitable 
variational principle. The results obtained for the heat flux through the two methods are compared and 
found in strict agreement (discrepancy less than 0.5 per cent). For the limiting case of the half-space 
problem, the temperature jump coefficient is evaluated both by a numerical and a variational procedure. 
The latter gives a value differing by about 0.5 per cent from the value given by the former procedure 
and of about 1 per cent from the value previously obtained by Welander. 

Comparisons are made with the results of the non-linear analysis of Willis, the linearized four moment 
solution and Takao’s experimental data. 
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NOMENCLATURE 

ratio of the temperature-jump co- 
efficient to the mean free path in 
the half-space problem ; 
nondimensional perturbation of 
the density at the wall; 
ratio of the molecular velocity 
vector to (2RT)3; 
x-component of c ; 
approximation to the source func- 
tion by the discrete ordinate 
method ; 
distance between the plates [cm] ; 
distribution function [g s3/cm6] ; 
Maxwellian distribution function 

[g s3/cm6] ; 
perturbation of the Maxwellianf, ; 
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mean free path [cm] ; 
pressure [g/cm s’] ; 
ratio of the x-component of the 
heat-flux vector to its free mole- 
cular value ; 
gas constant [cm’/degK s”] ; 
unperturbed temperature [degK] ; 
temperatures of the plates [degK] ; 
wall temperature [degK] ; 
transcendental functions defined 
by equation (2.11) ; 
transcendental functions defined 
by equation (2.12); 
variables measuring the ratio of x 
to 8(2RT)+; 
space coordinate [cm] ; 
coeffkients of the approximating 
system ; 

4[: 0 WW+] ; 
‘pi-~Li(i=1,2); 
mean free time [s].; 
viscosity coefficient [g/cm s] ; 
asymptotic value of Cpi (i = 1,2); 
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Pi? perturbations of density and tem- 
perature with respect to p and T 
respectively (i = 1, 2) ; 

P> average density [g/cm31 ; 

(Pi? perturbations of density and tem- 
perature in the half-space problem 
(i = 1, 2); 

*IO approximation to Ii/i by the dis- 
crete ordinate method ; 

+i+ pi AT/T (i = 1, 2); 

a, p, a, b, Cik, auxiliary quantities. 

All quantities whose dimensions have not 
been specified above are to be considered as 
dimensionless. 

1. INTRODUCTION 

HEAT transfer between parallel plates is a 
problem which has been frequently considered 
by people interested in rarefied gas-dynamics 
[l-7]. It contends to linearized Couette flow the 
place of the most studied boundary value 
problem in kinetic theory. In particular we recall 
that the so called .BGK model, introduced by 
Bhatnagar, Gross and Krook [8] in the kinetic 
theory of ionized gases, was about contem- 
porarily and independently introduced in rare- 
fied gas dynamics by Welander [9] in order to 
deal with the problem of plane heat transfer. 
The problem considered by Welander is a 
limiting case when one of the plates is pushed to 
infinity. Considering this problem turns out to 
be useful to evaluate the temperature-jump 
coefficient. 

After Welander’s analysis heat transfer was 
frequently used as a test-bed for approximated 
methods, but the linearized heat transfer prob- 
lem was never solved by using the BGK model 
with such accuracy as was done, e.g. for line- 
arized plane Poiseuille flow [11] and, more 
recently, for problems with cylindrical sym- 
metry, as Poiseuille flow in tubes of both circular 
[12] and annular section [13] and Couette flow 
between concentric cylinders [14]. 

We have, it is true, the accurate numerical 
solutions obtained by Willis [6] and Anderson 
[15] and this could be considered a sufficient 
reason to rule out any linearized treatment as 
superfluous. However, we have various reasons 
to consider linearized heat transfer between 
parallel plates as an interesting problem to be 
solved by the BGK model. Firstly, it seems 
natural to complete the set of typical linearized 
plane problems which have been solved by an 
accurate numerical procedure, and add heat 
transfer to Couette and Poiseuille flow. Secondly. 
we note that the linearization condition AT/T 
@ 1 cannot be violated strongly if T x!z AT are 
the temperatures of the plates. As a matter of 
fact, the results obtained by Willis [6] show that 
a proper choice of the parameters allows us to 
give a wide range of validity to the results 
obtained by a linearized treatment. It is not 
known whether this is a peculiar property of 
the BGK model or not. In any case, it seems 
worthwhile to have an accurate numerical 
solution of the linearized problem for comparison 
purposes, since the relation between the 
linearized BGK model and the linearized 
Boltzmann equation is much clearer than the 
relation between corresponding non-linear 
equations. Thirdly, we note that a new method of 
attacking linearized problems has been recently 
proposed [16]. This method is based on a 
variational principle and shows promising fea- 
tures as concerns its applications to complicated 
problems and models more general than BGK. 
This variational procedure was previously ap- 
plied to pure shear flows, such as plane Couette 
and Poiseuille flows and gave results in an 
exceptional agreement with the numerical solu- 
tion, at least as far as such overall quantities 
as the drag in Couette flow or the flow rate in 
Poiseuille flow are concerned. Therefore it has 
seemed worthwhile to apply this technique to a 
problem of different nature such as the heat- 
transfer problem. This has been done in order 
to check that the accuracy of the method is 
largely independent of the nature of the problem. 
This, in turn, insures that the technique can be 
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applied with confidence to more complicated 
problems, e.g. flows in cylindrical geometry, 
heat transfer from a sphere, flow past a spherical 
body, etc. 

Finally, it seemed also worthwhile to consider 
the half-space problem, i.e. the limiting case 
considered by Welander, and set up an accurate 
numerical technique for its solution. This not 
only allows a check on Welander’s result for the 
jump coefficient, but also gives the opportunity 
of studying techniques which can be extended 
to more difficult and important problems im- 
plying boundary conditions at infinity (external 
flows). 

In Section 2 the general formulation of the 
problem is given, in Section 3 the limiting case 
of the half-space is considered. In Section 4 we 
describe the numerical techniques, in Section 5 
the variational procedure. Finally, in Section 6 
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the results are given and various comparisons 
are made. 

2. GENERAL FORMULATION OF THE 
PROBLEM 

Axes are taken with the origin halfway 
between the parallel plates, which become x = 
&d/2. The temperatures of the plates are Ti = 
T + AT (at x = -d/2) and T, = T - AT (at 
x = d/2). The problem is linearized by postula- 
ting that AT/T 4 1. The molecular boundary 
conditions at each wall are fixed by assuming 
that the molecules emitted have a Maxwellian 
distribution function characterized by the wall 
temperature and zero mass velocity. Further 
conditions are that the net mass flow at the walls 
be zero, and that the total number of molecules 
betweep the walls be constant. 

Using the linearized version of the BGK model, the transport equation becomes 

ah h 1 
cX&+e=e -* sss exp C-c:] Nx, cr) de, 

+ 3 II-~(c* - 3) sjs (c: - 9) exp [-c:] h(x, cl) dc, (2.1) 

where h is the perturbation of a Maxwellian characterized by the average density and temperature 
p and T 

f, = p(27rRT)-* exp [-c*]; f = f,(l + h). (2.2) 

The molecular velocity c is measured in (2RT)* units, R being the gas constant. 8 is the mean 
free time related to viscosity and pressure by 

e=!!! 
2 P’ 

(2.3) 

x is the space coordinate in the direction orthogonal to the plates. 
The boundary conditions of diffuse reflection can be written as follows 

h(cx, - isgnc,) = 7 (c* + B) sgn c, (2.4) 

where B is a constant related to the density of the re-emitted molecules. B is fxed by the mass 
conservation at the walls, which implies 

SJJ exp C-c”] c, h(x, c,) dc = 0. (2.5) 

This relation holds not only at the walls (x = &d/2), but for any x, since its left-hand side is 
constant as a consequence of equation (2.1). 
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Let us now introduce the following quantities 

PI(X) = n-* jss exp [-c:] h(x, cr) dc, (2.6) 

p?(x) = 3 C* fji (c: - i) exp [-~$1 h(x, cl) dc,. (2.7) 

PI and pz are suitable expressions for nondimensional density and temperature respectively. 
Introducing equations (2.6) and (2.7) into equation (2.1) allows this equation to be integrated to 
give a couple of “pure” integral equations, incorporating also the boundary conditions : 

tile4 = -7+KL dW - 4 - T,. I@/2 + 4-j + (3 + q&)(6/2 - 4 - T,, ,(6/2 + u)] + 

- I[;; [T-I,& - t#+%(r)+ T-,,r(In - 01) MJ)] dr} (2.8) 

$z(u) = -+ 7r-+{[T&/2 - u) - T,, 2(6/2 + u)] + ($ + B) [T,, ,(6/2 - u) - T,. &S/2 + u)] + 

- 15: [T-I& - ~1) $1(r) + T-,,,(lu - 01) ti,(u)]dr}. (2.9) 

Here we have put 

u = 5.. 
8’ 

a=;; pi(X) = $i(U) AT/T (i = 1, 2); (2.10) 

while the functions T,, n are defined as follows 

T,,.(x) = jrdadb rdcc”‘(a’ + b2 + c2 - $)“exp[--a2 - b’ - c2 - (xl41 (2.11) 
-m 0 

and can be easily reduced to the functions T,(x), which are defined by the quadrature 

T,,(x) = 7 c” exp [ - ~2 - (x/c)] dc 
0 

(2.12) 

and are familiar to people dealing with the BGK model [9, 17, 181. In particular we quote the 
following useful relations 

T,,,,(x) = GA-4 

L, 16) = IT,,+, - (42) T,,(x) (2.13) 

T,,,(x) = C,+,(x) - G,,+2Cd + 2 G,,(x). 

Equation (2.5) now becomes 

TI, 1W2 + u) + TI, ,(W2 - u) + (B + 3) [q, 0W + u) + ?, ,W - u,] 
+a/2 

+ _[,2 sgn (u - ~)[T,,~(ju - 01) tW) + T,, klu - ~1) $2(u)] do = 0. (2.14) 

The ratio of the component of the heat-transfer vector along the x-axis to the corresponding 
value in free-molecular conditions is 

c,c2 exp C-c’] W, c,) dc = & [T,. 2(8/2 + U) 
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+ (3 + B) q, ,(6/2 + u) + 3 ($ + B) T,,,(@2 + a) + q, ,(@2 - u) 

+ (3 + B) Tr, ,(6/2 - u) + 3 (+ + B) T&5/2 - u,] 
+a/2 

1 

+% 
1 

sgn (u - r){CT,,r(Iu - ~1) + t T,,,((u - ul)l Ii/r(u) 
- 12 

+ I%& - ~1) + t T,, r(lu - rl)] $z(a)} du. (2.15) 

Although Q is formally depending on u, it is actually a constant throughout the gap between the 
plates, thanks to the energy conservation equation. The same thing can be said about the left side 
of equation (2.14), thanks to the mass conservation equation. 

3. THE TEMPERATURE JUMP PROBLEM 

If 6 9 1 the problem of heat conduction can be analysed by using the conventional continuum 
equations, but replacing the no-jump condition for temperature with the condition 

T-T =alE 
w an (3.1) 

where T, is the wall temperature, T the temperature and aT/an the normal derivative of the 
temperature at the wall according to the Navier-Stokes level of description, a a numerical 
constant, I the mean free path related to our mean free time by 

0 = 3rr-31; [(2RT)” = 11. (3.2) 

From the microscopic point of view @T/an), is the temperature slope at many (in practice, 10 or 
less) mean free paths from the wall. It is now of interest to determine the constant a from a kinetic 
description. This was done for the BGK equation by Welander [9] who. found a = (1.173) y, 
7 being the classical value obtained by Maxwell through an approximated reasoning. 

It seems worthwhile to check Welander’s results, since his numerical result of the corresponding 
constant in the slip coefficient turned out to be in error of about 10 per cent [lo, 191. 

Besides the temperature jump problem offers the possibility of testing numerical techniques 
which are thought to be useful in more complicated external flows, e.g. the flow past a body. 

The integral equations governing the density and temperature for this problem can be easily 
obtained either directly or from equations (2.8), (2.9) after factoring l/6 out from pi and going to 
the limit 6 + co. The result is 

cp~(u) = n-* {T,, l(u) - T,,,(u) + $ T-I,& - ul) cph) du + $ Tl, I+ - ul) c&u) du} (3.3) 

cpz(n) = 3@ {T,,,(u) - T,,,(u) + $ T-r,,+ - ~1) c~r(u)dr + $ %,~([a - +cpz(u)dr) (3.4) 

where the density p(x) and the temperature T(x) are related to cpi(u) (i = 1,2) by 

(3.5) 

T(x) = T + 6’ g &u). 
0 

(3.6) 
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We note also that in many cases we used, as in reference [ 111, a differencing procedure with equal 
steps. However, for small 6 a procedure based on taking intervals centered at the’zeroes of the 
Legendre polynomials was found more accurate and accordingly preferred. 

Similar procedures were used to write down the discrete analog of equation (2.15) giving the 
non-dimensional heat transfer. 

In the case of the half-space problem we proceeded as follows. We wrote equations (3.8) in a 
discrete fashion by using a mesh of variable stepsize. In order to determine pi (i = 1, 2) we differ- 
enced also the formulas obtained by equations (3.10) by putting u = 0. Then the system of 
resulting equations was solved numerically. The meshsteps were taken very small near the wall, 
but their size increased exponentially with the distance from the wall. This choice was dictated by 
the circumstance that the .si (i = 1, 2) are very small some mean free path far from the wall 
(practically zero for u = lo), but are very rapidly varying near the wall. As a test of good approxi- 
mation we evaluated with an analogous method the solution of the half-space shear flow problem 
and found a good agreement with the available solutions [lo, 20,211. 

The application of this method appears rather interesting, since we hope to apply it to external 
flow problems, the general procedure being that of subtracting the asymptotic behavior (in our case 

Cpi - pi) and then solve for the remaining part of the unknowns with a fine mesh near the wall. 

5. THE VARIATIONAL METHOD 

A general variational procedure applying to linearized kinetic models has been introduced in 
reference [16]. With reference to this paper we shall omit any details and consider the following 
functional 

.J(rJ, B) = (6, X* $- 6 $- 2s) + a17’ + 2@ (5.1) 

where G(u) is a two-dimensional vector 

bh(u, 

w) = (J$ $*(u) -I I 

and 6 a two-by-two matrix operator such that 

Besides 

(5.2) 

(5.3) 

a = wl,d4 + ~l,,(O)l (5.4) 

P = 2[T,, I(S) + 3 T,,,(d) + TI, I(0) + 3 T,,,(O)] (5.5) 

S(U) = - 
[T,, IV/2 - u) - T,, I@/2 + u)] + (; + P)[T,,,(6/2 - u) - To, ,(6/2 + u,] 

L/~XT,,2@/2 - 4 - T,,,w + 41 + L/_sM + @[To ,!6/2 - u) 
(5.6) 

+ T,, ,(6/2 + a)] . 

The functional (5.1) is such that, when varying @ and B, it attains its minimum value when $ = 
ti and fi = B, i.e. 6 and B satisfy equations (2.8) and (2.9) together with equation (2.14) (actually 
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the average between the relations obtained from this equation by putting u = + d/2). The minimum 
value attained by J($, B) is 

JW, B) = 2Wl. 45) + 3 T,,,(6) + q. i(O) + 2 T,,,(6)] 
+a/2 

+ _l,2{[T,, 1@/2 - u) - To. ,@/2 + d] + $[T,, 0@/2 - u) - To, ,(6/2 + u)]} rLl(u) du 

is/2 (5.7) 

+ _&2t70.2(~/2 - 4 - T,,2@/2 + u,] + $[T,, ,@/2 - 4 - To, ,(6/2 + u)]} e2(u) du. 

Now if we evaluate equation (2.15) at u = + 6/2 we find, by taking the arithmetical mean 

Q = ;w. B) + $ [ Tl,,kv + 3T,, r(6) + ; T,,,(6) + T,,,(O) + 3T,, r(O) + $ T,,,(O) . 1 (5.8) 
Therefore we achieve the result that the value of the heat flux is strictly related to the minimum 

value attained by the functional J. 
If we use the following trial function for $ 

where a and b are two available constants, we find 

J(f,@ = cllu2 + c2,b2 + c,,B2 + 2(c,,ab + c,,aB + c,,bB) - 2(c,a + c,b + +B) 

where 

h2 
C 11 = - - 4 1 + G(6) + 

9 
c22 = -62 

16 

C33 = 1 + 2T,(6) 

C 12 = 4-’ 2 + at2 2 2 + 3 ) Tom + (5 46 2 + 3 ) T,(6) + 363,(d) 

6 nnf- 
C --_ 

13=- _ + 6T,(4 + 2T,(6) 
L L 

6 .f a2 
c,,=---+- 

4 2 2 

5 
Cl = -6 + -7L+ - 

4 

W) + ;dTAh) + 2T,(6) 

; T,(6) - 5T,(6) - 363,(6) 

c2 = -is + in+ - +#) - 767;(d) - ; + 10 T,(6) 
( > 

c3 = -2 - ST,(d) - 4T,(6). 

(5.9) 

(5.10) 

Here the two-subscript T’s have been reduced to one-subscript T’s by means of equations (2.13). 
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Minimizing J(& B) with respect to a, b, B we find a system of linear equations which can be easily 
solved. The values of min .I($, B) corresponding to different 6 are then given by 

min J($, 8) = - c,a -.c,b - c,B (5.12) 

and are related to the heat flux by equation (5.8). The results will be given in the following section. 
An analogous procedure can be applied to the temperature jump problem. Here we consider the 

functional* 

where 

J(4) = @, G@ - n’@ + 2s) (5.13) 

T,,lb) - T,,,(u) 

w = J(S) CT,,2(4 - q,(u)] 

We also find from equations (3.11), by putting u = 0, ei = cpi - pi (i = 1,2) 

(5.14) 

(5.15) 

(5.16) 

i.e. 

/.+ = +$7r-+ + $7cn-+(i$, S) = #r-+ + $r-+ max .I($). (5.17) 

Since equations (3.1), (3.2), (3.6) and (3.7) give 

71) 
p2 = Ta, (5.18) 

equation (5.17) relates the value of the temperature-jump coefficient to the maximum attained by J. 
Now if we take a trial vector 4 given by the constant vector 

we find 

Therefore 

Cl 
c= I I c2 

J(c) = - ;cf - +c2 - ;.,: 

max J(c) = g7t2. 

(5.19) 

(5.20) 

(5.21) 

l The range of integrations of the integrals appearing in equation (5.3) and in the inner product is now obviously 
changed from [-(a/2), +(6/2)] to (0, co). 
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It follows that according to the present simple approximation to cp we find 

and consequently 

a = 2 25n 8 ’ [ 1 ‘+52 15 

(5.22) 

(5.23) 

6. RESULTS 

The heat flux resulting from the numerical and variational methods is given in Table 1. It will be 
seen that the disagreement is very small (less than 0.5 per cent for 6 < 10). This circumstance consti- 
tutes a good test for the accuracy of both methods. 

Table 1. Heat flux vs. inverse Knudsen number 

6 Numerical solution Variational method 

0.01 0.9925 0.9925 
0.1 0.9352 0.9352 
0.5 0.7682 0.7683 
1.0 0.6405 0.6409 
1.25 0.5933 0.5939 
1.5 0.5532 0.5539 
1.75 0.5194 0.5194 
2.0 0.4893 0.4894 
2.5 0.4390 0.4391 
3.0 0.3985 0.3986 
4.0 0.3370 0.3370 
5.0 0.2923 0.2922 
7.0 0.2314 0.2311 

IO.0 0.1767 0.1760 

In Fig. 1 the resulting curve is compared with the four moment result 

Q = [l + 46/57$-i. (6.1) 

It is also to be noted that for 6 G 1.5 the numerical results show an almost complete coincidence 
with the results obtained by Wang Chang and Uhlenbeck [l] for Maxwell molecules. 

It appears interesting to consider a comparison of the linearized results with the results of Willis’s 
non-linear treatment [6]. To this end it is useful to introduce the rarefaction parameter I suggested 
by Willis. I is simply equal to 8d/5&* provided that 8 is evaluated for a temperature T' given by 

* We note that equations (31) and (32) of reference [6] are in contrast and equation (31) should be regarded as correct. 
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The comparison is shown in Fig. 2. As was 
already noticed by Willis the correlation be- 
tween linearized and non-linearized results is 
extremely good with the adopted definition of r. 

A comparison with Takao’s experimental data 
was also made. Although Takao considered 
heat transfer in air and our results apply to a 
monoatomic gas, the comparison is possible 
provided that we are not very near to the con- 
tinuum region. As a matter of fact, if we plot the 
ratio of the heat transfer to its free molecule 
value we take away the dependence on the 
nature of the gas in the free molecular limit. 

- Present theory 

- - - Four moment method (Lees and Liu) 

01 1 1 1 IIIfII 1 1 1111’1 1 1 h 11,1x’ 

10-Z 10-l I .10 

8 

FIG. 1. Comparison of our results with linearized four- 
moment solution by Lees and Liu’s half-range method. 
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The disadvantage of this way of plotting is that 
the experimental errors and the inaccuracy of 
deducing data from Takao’s plot are magnified 
in the free molecular limit. 

In any case, Fig. 3 shows the comparison for 
6 ranging from 0.2 to 10. 

While the variational approach, by its own 
nature, cannot give accurate temperature and 
density profiles, but only a linear tit of them, 

FIG. 2. Comparison of our results with Willis’s solution of 
the nonlinear BGK model. Willis’s abscissae are measured 
in terms of a mean free path corresponding to the average 

temperature of equation (6.2). 

0 .Takoo’s data 

- Present theory 

I I I I I I 

a 2 4 6 6 IO 

a 

FIG. 3. Comparison with Takao’s experimental data. 
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the numerical solution gives also an accurate Concerning the half-space problem we evalu- 
representation of the local values of density and ated the temperature and density profiles by the 
temperature. Typical examples of such profiles finite difference method; the deviations from the 
are given in Figs. 4 and 5. linear asymptotic behaviour are shown in Fig. 6. 

A 8 =I00 

8 I ,o 
C O-I 

t 

---6, 

I 
I 
I 
I 

\ 
\ 

I 

0 I 3 5 7 

FIG. 4. Profiles of the density perturbation for typical values u-x/e 

of the inverse Knudsen number 6. FIG. 6. Profiles of the density and temperature perturbations 
in the half-space problem. 

o-4 

03 

0,2 

01 

A 8 = 10-O 

FIG. 5. Profiles of the temperature perturbation for typical 
values of the inverse Knudsen number 6. 

The same calculation gave the following 
values for pi (i = 1,2) : 

,u, = -0.7319 ) _ 

P2 = 1.2941. 1 (6.3) 

Therefore the temperature-jump coefficient 
turns out to be: 

a = 3x- l/2(1.2941) = +$ (1.1682) (6.4) 

The value obtained by the variational method 
is by equation (5.23) : 

a = y (1~1621). (6.5) 

The discrepancy is less than 053 per cent. 
The value 1.173 obtained by Welander [9] 
differs from equation (6.4) by 0.43 per cent and 
from equation (6.5) by 0.86 per cent. 

7. CONCLUDING REMARKS 

A typical linearized problem of kinetic theory 
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has been solved by two different methods, based 
respectively on a differencing procedure and a 
variational approach. The agreement between 
these results is good. 

Since the BGK model has bee! used in place 
of the true linearized Boltzmann equation, it is 
pertinent to ask whether the change of the 
collision term affects significantly the results. 
Concerning this point, we can quote the result 
that the most striking inaccuracy of the BGK 
model, i.e. the fact that the Prandtl number is 
equal to 1 instead of 3, has not very marked 
influence on the results, although in the tran- 
sition regime normal stresses are present, which 
are certainly influenced by the value of the 
Prandtl number. To be precise we can say* that 
if a more sophisticated model with correct 
Prandtl number is used, as proposed in refer- 
ence [22], corrections to heat flux in the 
transition regime are less than 0.5 per cent. 

Therefore, the results for the BGK model 
should be quite accurate also for Maxwell 
molecules, unless higher order moments have an 
improbable influence on the results. 

17. H. FAXBN, Expansion in series of the integral 
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* Kind communication by Dr. Gino Tironi. 

R&am&--On considbre le transport de chaleur linhrist entre deux plaques parallbles dans la gamme des 
inverses du nombre de Knudsen allant de 0 & 10. Le modhle de Bhatnagar, Gross et Krook est employt 
et transform& en un couple d’tquations inttgrales pour la densitt et la temp&rature. Ces &quations sont 
rbsolues num6riquement. De plus, on fait un calcul variationnel de la solution en introduisant des fonctions 
d’essai simples avec un principe variationnel convenable. Les resultats obtenus pour le flux de chaleur B 
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l’aide des deux mCthodes sent comparts et l’on a constatt leur accord ttroit (diffbrence infkrieure a 0.5 pour 
cent). Dans le cas limite du problkme du demiespace, le coefficient de saut de temp&ature est evaI& B 
la fois numbiquement et par un proc6dC variationnel. Ce dernier donne une valeur difT&ant d’environ 0.5 
pour cent de la valeur don&e par le premier proctdt et d’environ 1 pour cent de la valeur obtenue 
auparavant par Welander. 

On a cornpark avec les rtsultats de l’analyse non-lintaire de Willis, la solution lin&ar&e des quatre 
moments et les r&sultats exptrimentaux de Takao. 

Zusammenfassumg-Der linearisierte WlrmeDbergang zwischen zwei parallelen Platten wird behandelt 
fiir Kehrwerte der Knudsenzahl von 0 bis 10. Das Model1 von Bhatnagar, Gross und Krook wird beniitzt 
und transformiert in eine Reihe von Integralgleichungen fiir die Dichte und Temperatur. Diese Gleichungen 
werden numerisch gel&t. Daneben ist eine Variationsrechnung filr die Liisung durchgefiihrt durch 
Einfiihrung einfacher Versuchsfunktionen in ein geeignetes Variationsschema. Die nach beiden Methoden 
erhaltenen Ergebnisse fiir den Wlrmestrom werden verglichen und es ergibt sich strenge Ubereinstimmung 
(Abweichung weniger als 0.5 Prozent). Fiir den Grenzfall des Halbraumproblems ist der Koefiizient fiir 
den Temperatursprung sowohl nach einem numerischen Verfahren als such nach der Variationsmethode 
berechnet. Letztere liefert einen Wert, der etwa 0,5 Prozent abweicht von jenem. der nach der erstgenannten 
Methode ermittelt wird und etwa 1% Abweichung zu dem kiirzlich von Welander erhaltenen Wert aufweist. 

Vergleiche wurden durchgefiihrt mit den Resultaten der nichtlinearen Analyse von Willis, der linearisier- 
ten Liisung mit vier Momenten und Takaos experimentellen Daten. 

AHHOT8~Jr-PaCCMaTpKBaeTCfl JIiSHeapH3HpOBaHHaR 3aaasa TeuJIOOO6MeKa MW+iAJ' ,!&BJ'MH 

uapaJlJIWlbHblMM uJlaCTklHaMA AJlH 06paTHbIX 3Ha'WHMfi =iUCeJl HHJ'ACeHa B AElaua3OHe OT 0 

A0 10. &uOJIb3j'eTCH MOWJIb I;XaTHarapa, rpOCCa II KpJ'Ka, KOTOpaR upeO6pa30BbIBaeTCH 

B CclCTeMy ABJ'X IlHTerpaJIbHbIX YpaBHeHMti &JIH rNIOTHOCTIl M TeMIIf$JaTJ'pM. 3TII ypaBHeHWl 

peLIIeHbI'ikiCJIeHHO.~pOMeTOrO,BblIIOJlHeH BapllaqHOHHbIftpaCWTpemeHKH uyTeM BBeAt?HHH 

upOCTMX IIpO6HbIX @yHKl@ B COOTBeTCTBHM C BapMa~HOHHbIM rIpHHLWIOM. npOBeAeH0 

CpaBHeHlle pe3J'JIbTaTOB, uOJIJ"EHHbIX AJIll TeuJlOBOrO uOTOKa C rK)MOIUbH) 3TWX ABYX Mt?TO- 

ROB, II HatiAeHO BX XOpOIlIW COOTBt?TCTBIle (C OTKJIOHeHAl?M He 6onee 0,5x). SJIcI upeAWIb- 
HOrO CJI)'qafi 3aAa'IH B IIOJQ'upOCTpaHCTBe K03@#WAeHT CKa'iKa Tt'MrEpaTyp OupeE5IJETCFl 

KaK WCJIeHHblM, TaK II BapRaqMOHHbIM MeTOAOM. BapkIaqPlOHHbIh MeTOJI ;laeT 3HaV'?HkIe, 

0TJwialoueecK Ha -0,5q& OT :3uaqeHHfl, nonyqeauoro qticneHHbr8 M~T~AOM, R Ha ml?/, - 
OT :3HaqeuHR YanauAepa. 

npOBeAeH0 CpaBHeHHe IIOnj'WHHbIX pW)'JlbTaTOB C pe3J.JIbTaTaMM He~LSHeitHOrO aHaJIM33 

Sw.ni4ca, n~Heapna~poeaHabr>~ pemeallehl seTbrpex MOMeHTOB II 3KCnepHMeHTaJIbHbIMM 

~aHHbIMI1 'hlKa0. 


