Int. J. Heat Mass Transfer. Vol. 10, pp. 447-460. Pergamon Press Ltd. 1967. Printed in Great Britain

COMPARISON OF KINETIC THEORY ANALYSES
OF LINEARIZED HEAT TRANSFER BETWEEN
PARALLEL PLATES

P. BASSANINL* C. CERCIGNANIt and C. D. PAGANI*
Applicazioni e Ricerche Scientifiche, S.p.A., Milano, and Instituto di Scienze Fisiche, University of Milano, Milano

(Received 21 March 1966)

Abstract—Linearized heat transfer between two parallel plates is considered for inverse Knudsen numbers
ranging from O to 10. The Bhatnagar, Gross and Krook model is used and transformed into a couple
of integral equations for density and temperature. These equations are solved numerically. Besides
a variational calculation of the solution is made by introducing simple trial functions in a suitable
variational principle. The results obtained for the heat flux through the two methods are compared and
found in strict agreement (discrepancy less than 0-5 per cent). For the limiting case of the half-space
problem, the temperature jump coefficient is evaluated both by a numerical and a variational procedure.
The latter gives a value differing by about 0-5 per cent from the value given by the former procedure:
and of about 1 per cent from the value previously obtained by Welander.
Comparisons are made with the results of the non-linear analysis of Willis, the linearized four moment
solution and Takao’s experimental data.

NOMENCLATURE
a, ratio of the temperature-jump co-
efficient to the mean free path in
the half-space problem;

B, nondimensional perturbation of
the density at the wall;

c, ratio of the molecular velocity
vector to (2RT)*;

Cys x-component of ¢;

Cp» approximation to the source func-
tion by the discrete ordinate
method ;

d, distance between the plates [cm];

f, distribution function [g s*/cm®];

Lo Maxwellian distribution function
[gs%/em®];

h, perturbation of the Maxwellian f, ;
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mean free path [cm];

pressure [g/cm s?];

ratio of the x-component of the
heat-flux vector to its free mole-
cular value;

gas constant [cm?/degK s?];
unperturbed temperature [degK];
temperatures of the plates [degK];
wall temperature [degK];
transcendental functions defined
by equation (2.11);

transcendental functions defined
by equation (2.12);

variables measuring the ratio of x
to 0(2RT)*;

space coordinate [cm];
coefficients of the approximating
system;

d/[6 QRT)];

o — (i =1,2);

mean free time[s];

viscosity coefficient [g/cm s];
asymptotic value of ¢, (i = 1, 2);
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Pis perturbations of density and tem-
perature with respect to p and T
respectively (i = 1, 2);

o, average density [g/cm?];

@i, perturbations of density and tem-
perature in the half-space problem
(i=1,2);

Vi approximation to y; by the dis-
crete ordinate method;

2 pi AT/T (i = 1,2);

o, B, a,b,c, auxiliary quantities.

All quantities whose dimensions have not
been specified above are to be considered as
dimensionless.

1. INTRODUCTION

HEAT transfer between parallel plates is a
problem which has been frequently considered
by people interested in rarefied gas-dynamics
[1-7]. It contends to linearized Couette flow the
place of the most studied boundary value
problem in kinetic theory. In particular we recall
that the so called BGK model, introduced by
Bhatnagar, Gross and Krook [8] in the kinetic
theory of ionized gases, was about contem-
porarily and independently introduced in rare-
fied gas dynamics by Welander [9] in order to
deal with the problem of plane heat transfer.
The problem considered by Welander is a
limiting case when one of the plates is pushed to
infinity. Considering this problem turns out to
be useful to evaluate the temperature-jump
coefficient.

After Welander’s analysis heat transfer was
frequently used as a test-bed for approximated
methods, but the linearized heat transfer prob-
lem was never solved by using the BGK model
with such accuracy as was done, e.g. for line-
arized plane Poiseuille flow [11] and, more
recently, for problems with cylindrical sym-
metry, as Poiseuille flow in tubes of both circular
[12] and annular section [13] and Couette flow
between concentric cylinders [14].

We have, it is true, the accurate numerical
solutions obtained by Willis [6] and Anderson
[15] and this could be considered a sufficient
reason to rule out any linearized treatment as
superfluous. However, we have various reasons
to consider linearized heat transfer between
parallel plates as an interesting problem to be
solved by the BGK model. Firstly, it seems
natural to complete the set of typical linearized
plane problems which have been solved by an
accurate numerical procedure, and add heat
transfer to Couette and Poiseuille flow. Secondly.
we note that the linearization condition AT/T
< 1 cannot be violated strongly if T £ AT are
the temperatures of the plates. As a matter of
fact, the results obtained by Willis [6] show that
a proper choice of the parameters allows us to
give a wide range of validity to the results
obtained by a linearized treatment. It is not
known whether this is a peculiar property of
the BGK model or not. In any case, it seems
worthwhile to have an accurate numerical
solution of the linearized problem for comparison
purposes, since the relation between the
linearized BGK model and the linearized
Boltzmann equation is much clearer than the
relation between corresponding non-linear
equations. Thirdly, we note that a new method of
attacking linearized problems has been recently
proposed [16]. This method is based on a
variational principle and shows promising fea-
tures as concerns its applications to complicated
problems and models more general than BGK.
This variational procedure was previously ap-
plied to pure shear flows, such as plane Couette
and Poiseuille flows and gave results in an
exceptional agreement with the numerical solu-
tion, at least as far as such overall quantities
as the drag in Couette flow or the flow rate in
Poiseuille flow are concerned. Therefore it has
seemed worthwhile to apply this technique to a
problem of different nature such as the heat-
transfer problem. This has been done in order
to check that the accuracy of the method is
largely independent of the nature of the problem.
This, in turn, insures that the technique can be
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applied with confidence to more complicated
problems, e.g. flows in cylindrical geometry,
heat transfer from a sphere, flow past a spherical
body, etc.

Finally, it seemed also worthwhile to consider
the half-space problem, ie. the limiting case
considered by Welander, and set up an accurate
numerical technique for its solution. This not
only allows a check on Welander’s result for the
jump coefficient, but also gives the opportunity
of studying techniques which can be extended
to more difficult and important problems im-
plying boundary conditions at infinity (external
flows).

In Section 2 the general formulation of the
problem is given, in Section 3 the limiting case
of the half-space is considered. In Section 4 we
describe the numerical techniques, in Section 5
the variational procedure. Finally, in Section 6
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the results are given and various comparisons
are made.

2. GENERAL FORMULATION OF THE
PROBLEM

Axes are taken with the origin halfway
between the parallel plates, which become x =
+d/2. The temperatures of the plates are T; =
T+ AT (at x= —d/2) and T, = T — AT (at
x = d/2). The problem is linearized by postula-
ting that AT/T < 1. The molecular boundary
conditions at each wall are fixed by assuming
that the molecules emitted have a Maxwellian
distribution function characterized by the wall
temperature and zero mass velocity. Further
conditions are that the net mass flow at the walls
be zero, and that the total number of molecules
between the walls be constant.

Using the linearized version of the BGK model, the transport equation becomes

oh h

1 _
L { #[§ [ exp [~ 3] hix. ¢) dey

F3aHe — ) [} (@ = 3 exp [— ] hix, c1) dcl}

(2.1)

where h is the perturbation of a Maxwellian characterized by the average density and temperature

pand T

fo = p2nRT) *exp [-c?];

f=£1 + h. 2.2)

The molecular velocity ¢ is measured in (2RT)* units, R being the gas constant. § is the mean

free time related to viscosity and pressure by

x is the space coordinate in the direction orthogonal to the plates.
The boundary conditions of diffuse reflection can be written as follows

h<cx, - %sgn cx> = A

3p

75 (2.3)
T

@+ Bsgnc, 24)

where B is a constant related to the density of the re-emitted molecules. B is fixed by the mass

conservation at the walls, which implies

§§§ exp [—c*] ¢, h(x, c,) dc = 0.

(2.5

This relation holds not only at the walls (x = 1d/2), but for any x, since its left-hand side is

constant as a consequence of equation (2.1).
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Let us now introduce the following quantities
pi(x) = n ¥ [ff exp [—c}] h(x, ¢,) de, (2.6)
pax) = 377 % [[f (¢ — 3)exp [—c}] hlx, ¢,) dc;. 2.7

p1 and p, are suitable expressions for nondimensional density and temperature respectively.
Introducing equations (2.6) and (2.7) into equation (2.1) allows this equation to be integrated to
give a couple of “pure” integral equations, incorporating also the boundary conditions:

Vi) = —n H{[T5,1(6/2 - w) — Tp,4(6/2 + w)] + & + B)[Ty.0(0/2 — u) — Ty o(6/2 + w] +
- g/’ [T-1ollu = oD¥a @)+ Toyu(Ju — o) Yo0)] v} (28)
Vo) = =377 H{[T, 5002 — w) — T 5(6/2 + w)] + G + B)[Tp1(6/2 — u) — Ty 1(8/2 + w)] +
= D Il = oD+ Tl = oDy}, (9

Here we have put

=35 5= p = W ATIT G = 1,2); (2.10)

while the functions T,, , are defined as follows
+ -]
T, %) = ff dadb | dcc™a® + b* + ¢ — I exp[—a® — b> — ¢ — (x/c)] (211)
- [

and can be easily reduced to the functions 7,(x), which are defined by the quadrature
T,(x) = | c"exp[—¢* — (x/g)] dc (2.12)
0

and are familiar to people dealing with the BGK model [9, 17, 18]. In particular we quote the
following useful relations
T,, o(x) = T, (x)
Tn 1(x) = 2T 4 2(%) — (n/2) Tox) (2.13)
T, 2(x) = 2T 4(%) — 7T 5(%) + § 7T ().

Equation (2.5) now becomes
T,,10/2 + w) + T, 1(6/2 — w) + (B + [T}, 0(6/2 + w) + T, 0(0/2 — w)]

+4/2

+ jq sgn (u — V)[Ty olu — o)) ¥, () + Tp, (Ju — v|) Y2(©)] dv = 0. (2.14)

The ratio of the component of the heat-transfer vector along the x-axis to the corresponding
value in free-molecular conditions is

- % _ il 2 2 _ _1 5
Q= Qtm 27 ATJJ:[QC exp [—c*] hl(x, ¢,) de = o [T;.,08/2 + u)
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+B+BT62+u+33G + BT, 66/2+u + Ty 262 — u
+ @B+ B)T,,4(6/2 —w + 3G + B) Ty 4(6/2 — u)]
+48/2

1
+ m sgn (u — U){[To, 1(|“ - U|) + % To,o(l“ - U!)] ¥1(v)

—8/2

+ [Ty, 2(|u — o) + 3 T, W(|u = v)] ¥2(v)} do. (2.15)

Although Q is formally depending on u, it is actually a constant throughout the gap between the
plates, thanks to the energy conservation equation. The same thing can be said about the left side
of equation (2.14), thanks to the mass conservation equation.

3. THE TEMPERATURE JUMP PROBLEM
If § > 1 the problem of heat conduction can be analysed by using the conventional continuum
equations, but replacing the no-jump condition for temperature with the condition

T-T, = alﬂ 3.1)
on

where T, is the wall temperature, T the temperature and 0T/0n the normal derivative of the
temperature at the wall according to the Navier-Stokes level of description, a a numerical
constant, / the mean free path related to our mean free time by

0=73n"%; [QRT) =1]. (3.2)

From the microscopic point of view (0T/dn),, is the temperature slope at many (in practice, 10 or
less) mean free paths from the wall. It is now of interest to determine the constant a from a kinetic
description. This was done for the BGK equation by Welander [9] who.found a = (1:173) 4,
L2 being the classical value obtained by Maxwell through an approximated reasoning.

It seems worthwhile to check Welander’s results, since his numerical result of the corresponding
constant in the slip coefficient turned out to be in error of about 10 per cent [10, 19].

Besides the temperature jump problem offers the possibility of testing numerical techniques
which are thought to be useful in more complicated external flows, e.g. the flow past a body.

The integral equations governing the density and temperature for this problem can be easily
obtained either directly or from equations (2.8), (2.9) after factoring 1/5 out from y; and going to
the limit  — oo. The result is

i) = o % {T,1(u) — Ty o(w) + I T—1,o(|u - U|) @(v)dv + Z T1,1(|“ - UI) @,(v) dv} (3.3)

@) =307 {T, ,(u) — T, ,(w) + }: T_y,1(|u = v]) @1(v) dv + OI: Ty, o|u — v]) @a(0) dv}  (3.4)

where the density p(x) and the temperature T'(x) are related to ¢(u) (i = 1, 2) by

0 (0T
o) = p + 52 (5) 0, (33)

oT
Tx)=T+ 6 (%) @,(u). (3.6)



452 P. BASSANINI, C. CERCIGNANI and C. D. PAGANI

It is also useful to consider another couple of functions gu) (i = 1, 2) related to ¢; by
o) = w; + ew);  w = lim o). (3.7

In terms of these new unknowns, equations (3.3) and (3.4) become
e = 17 {— Ty o) — p, Ty () + Ty, () — Ty, o(w)

+ j T_, ollu — v]) &,(v) dv + j T_, 4(ju — v))e(v)dv}  (3.8)

e =%n"t {— Ty () — p,. T o) + Ty o(w) — Ty, 4()
+ (j) Ty (Ju — o) e do + [ T-y o|u — v]) ex(v)do}.  (3.9)
o

It is also useful to write down the two systems of equations which are obtained from equations
(3.8) and (3.9) by integrating once and twice respectively

j sgn (u — v) Ty o(|u — v]) &4(v) dv + f sgn (u — v) Ty 4(lu — v]) e,(v) dv )

= Tq, o) + paTy () — T2, 1) + T3 o(u)
. - ‘ L (3.10)
(j) sgn (u — v) Ty, ((Ju — v]) g4() dv + g sgn (u — v) Ty, 5(ju — v]) ex(v) do

= Ty (W) + pu T, (W) — Ty H(u) + TZ.I(ul
(j) Ty ofju — o)) £40) do + g Ty, (Ju — v]) 5(v) do |
=T, o) + p, T, 1(w) — Ts () + T; o(u)

>(3.11)
5 Ty, (|u — v]) &y(v) dv + f Ty 2(|u — o)) e,(v) dv

= T 1w + u, T, ) — Ts o) + Ty 4 (w),

4. NUMERICAL TECHNIQUES OF SOLUTION
As in the previous case of plane Poiseuille flow [11], we have solved equations (2.8) and (2.9)
by numerical techniques. Also in this problem the most obvious way of differencing these equations
cannot be used because of the singularity of the kernel for vanishing argument. However, since
this singularity of the kernel is integrable, we considered the following system

n

kz auty=c, (h=1,...,n (4.1)
where Yo = 3 + B), ¥, (k = —n, ..., —1) approximates ¥ () for u = u,, Y, (k = 1,....n)
approximates y,(u) for u = u,, and the «, and ¢, are given by formulas simple but too long to be
reported here.

A differencing method similar to method (a) of reference [11] was used. The resulting difference
equations have the following simple interpretation : the functions (u) (i = 1, 2) are approximated
by a stepwise function and the constant value on every interval is interpreted as the value in the
midpoint. Besides B is assumed to be fixed by equation (2.14) written in a discrete fashion for
u= —9/2.
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We note also that in many cases we used, as in reference [11], a differencing procedure with equal
steps. However, for small § a procedure based on taking intervals centered at the zeroes of the
Legendre polynomials was found more accurate and accordingly preferred.

Similar procedures were used to write down the discrete analog of equation (2.15) giving the
non-dimensional heat transfer.

In the case of the half-space problem we proceeded as follows. We wrote equations (3.8) in a
discrete fashion by using a mesh of variable stepsize. In order to determine y; (i = 1, 2) we differ-
enced also the formulas obtained by equations (3.10) by putting u = 0. Then the system of
resulting equations was solved numerically. The meshsteps were taken very small near the wall,
but their size increased exponentially with the distance from the wall. This choice was dictated by
the circumstance that the ¢ (i = 1, 2) are very small some mean free path far from the wall
(practically zero for u = 10), but are very rapidly varying near the wall. As a test of good approxi-
mation we evaluated with an analogous method the solution of the half-space shear flow problem
and found a good agreement with the available solutions [10, 20, 21].

The application of this method appears rather interesting, since we hope to apply it to external
flow problems, the general procedure being that of subtracting the asymptotic behavior (in our case
@; ~ 1;) and then solve for the remaining part of the unknowns with a fine mesh near the wall.

5. THE VARIATIONAL METHOD
A general variational procedure applying to linearized kinetic models has been introduced in
reference [16]. With reference to this paper we shall omit any details and consider the following
functional

JO, By = (§. n* §— S y— 28) + aB* + 288 (5.1)
where ¥ (u) is a two-dimensional vector
. ’ 1(w) )
0w 62
and & a two-by-two matrix operator such that
+4/2 ~
- f T—1,o(|u - D|) (\/%) T—1,1(|“ - Ul) ) ¥ 1(u)
SV = %572 (\/%) T_1,1(|u - Ul) % T-1,2(|“ - U|) l/72(u) do. 53
Besides
a = 2[T; o0 + Ty 0)] 54
B =2[T 1(8) + 3 T, 0(0) + Ty 4(0) + 3 T;,(0)] (5.5)
- [To,1(6/2 — w) — Ty 1(6/2 + w] + G + B)[Ty, 0(6/2 — u) — Ty, o(6/2 + )]
S(u) = (5.6

T WBIT,202 = w) — T, 262 + W] + (G + BT, ,/6/2 — w)
+ Ty, 1(6/2 + w)]| .

The functional (5.1) is such that, when varying ¥ and B, it attains its minimum value when § =
¥ and B = B, ie. ¥ and B satisfy equations (2.8) and (2.9) together with equation (2.14) (actually
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the average between the relations obtained from this equation by putting u = +§/2). The minimum
value attained by J(¥, B) is
J,B) = 2B[T, 1(6) + 3 T1,o(0) + T;.1(0) + 3 Ty, o(6)]

+4/2

+ _g/z{[To,1(5/2 —u) = To4(6/2 + w] + 3[T5,o(6/2 — u) — T o(8/2 + w)]} ¥y(u) du

(5.7)
+6/2
+ _;E/z{[TO' 206/2 —w) — Ty 5(6/2 + )] + 3[ T, 1(6/2 — w) — Ty 1(6/2 + )]} ¥p(w) du.
Now if we evaluate equation (2.15) at u = +6/2 we find, by taking the arithmetical mean
1 1 9 9
Q= EJ(!#, B) + e [Tl'z(é) + 3T, 4(0) + 1 Ty, o(0) + Ty 5(0) + 3T, ,(0) + i TIVO(O)]. (5.8)

Therefore we achieve the result that the value of the heat flux is strictly related to the minimum
value attained by the functional J.
If we use the following trial function for ¥

au
¥ () = (3 bu (59)
where a and b are two available constants, we find
JW, B) = c110® + c35b* + €33B% + 2c15ab + ¢13aB + ¢33bB) — 2(c,a + ;b + ¢3B) (5-10)
where
82 & |
Ciy = T 1 4+ 6TH(0) + > + 2} Ti(8) + 26T5(d)
9 21 6 1(33 3 (8
c23 =75 0% = -+ (36 + 21 TH(d) + 5(7 & + 21> Té) + 3 (3- + 21) T5(0)
C33 = 1 + 2T1(5)
62 3 6 /(8 5
=g -5+3 (7 + 3) Ty (d) + (252 + 3> Ty(8) + 36T,(5)
5 nt
c13 =5 = 5 + 6Ti(d) + 2T(9) r (511
5 nt & 3
5 82
¢y = —0+ Zn* -3 Ty(8) — 5T(8) —38T(5)
3 5 7 82
¢y = _2_5 + En* - ZaZTo(é) — 18T,(8) — (7 + 10) T;(5)
3 = —2 — 8Ty(d) — 4Ty(0). ’

Here the two-subscript T’s have been reduced to one-subscript T’s by means of equations (2.13).
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Minimizing J(&, B) with respect to a, b, B we find a system of linear equations which can be easily
solved. The values of min J(§, B) corresponding to different & are then given by

min J, B) = —c,a —.c;b — 3B (5.12)

and are related to the heat flux by equation (5.8). The results will be given in the following section.
An analogous procedure can be applied to the temperature jump problem. Here we consider the
functional*

J(@) = (§, Sp — n¥p + 29) (5.13)
where
¢1(v)
p = - 5.14
LAl INCIT X 14
T, ,1(u) — T, o(w)
Su) = 5.15
(w) \/ (32‘) [Tl.z(“) - T1,1(“)] ( )
We also find from equations (3.11), by puttingu = 0,¢; = ¢, — u; (i = 1,2)
- 5 13
(@.5) = Zn*uz -5 (5.16)
ie.
pe =17 + $743,8) = 1377 + 4n” T max J (). (5.17)
Since equations (3.1), (3.2), (3.6) and (3.7) give
3
4y = % a, (5.18)

equation (5.17) relates the value of the temperature-jump coefficient to the maximum attained by J.
Now if we take a trial vector @ given by the constant vector

a1
c= ¢, (5.19)
we find
7 T 3 5 [m\?

Jie)= — ch — @i — ch% + En(g) s (5.20)

Therefore

2

max J(e) = = n2, (521)

64

* The range of integrations of the integrals appearing in equation (5.3) and in the inner product is now obviously
changed from [—(8/2), +(8/2)] to (0, o0).



456 P. BASSANINI, C. CERCIGNANI and C. D. PAGANI

It follows that according to the present simple approximation to ¢ we find

_ i 32
H2=8™\2 ™ 251
L, 325
A T I

6. RESULTS

and consequently

(5.22)

(5.23)

The heat flux resulting from the numerical and variational methods is given in Table 1. It will be
seen that the disagreement is very small (less than 0-5 per cent for § < 10). This circumstance consti-

tutes a good test for the accuracy of both methods.

Table 1. Heat flux vs. inverse Knudsen number

I Numerical solution  Variational method
0-01 0-9925 0-9925
01 0-9352 0-9352
0-5 0-7682 0-7683
1-0 0-6405 0-6409
1-25 0-5933 0-5939
15 0-5532 0-5539
1-75 0-5194 0-5194
2-0 0-4893 0-4894
2-5 0-4390 0-4391
30 0-3985 0-3986
4-0 0-3370 0-3370
50 0-2923 0-2922
7-0 0-2314 0-2311

10-0 0-1767 0-1760

In Fig. 1 the resulting curve is compared with the four moment result

Q = [1 + 48/574]".

(6.1)

It is also to be noted that for § < 1-5 the numerical results show an almost complete coincidence

with the results obtained by Wang Chang and Uhlenbeck [1] for Maxwell molecules.

It appears interesting to consider a comparison of the linearized results with the results of Willis’s
non-linear treatment [6]. To this end it is useful to introduce the rarefaction parameter r suggested
by Willis. r is simply equal to 8d/5n*8* provided that 0 is evaluated for a temperature T’ given by

1 Nk AT\ ]
T_Z[(T+AT)%+(T—AT)] [1—(7):' .

(6.2

* We note that equations (31) and (32) of reference {6] are in contrast and equation (31) should be regarded as correct.
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The comparison is shown in Fig. 2. As was
already noticed by Willis the correlation be-
tween linearized and non-linearized results is
extremely good with the adopted definition of r.

A comparison with Takao’s experimental data
was also made. Although Takao considered
heat transfer in air and our results apply to a
monoatomic gas, the comparison is possible
provided that we are not very near to the con-
tinuum region. As a matter of fact, if we plot the
ratio of the heat transfer to its free molecule
value we take away the dependence on the
nature of the gas in the free molecular limit.

Present theory

===—=—Four moment method (Lees and Liu)

Lodaial Ll Ll

0 L

1072 107! 1 10

3
Fic. 1. Comparison of our results with linearized four-
moment solution by Lees and Liu’s half-range method.
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The disadvantage of this way of plotting is that
the experimental errors and the inaccuracy of
deducing data from Takao’s plot are magnified
in the free molecular limit.

In any case, Fig. 3 shows the comparison for
é ranging from 0-2 to 10.

While the variational approach, by its own
nature, cannot give accurate temperature and
density profiles, but only a linear fit of them,

-0
\ e |inearized theory
o 1 4
o9l % /%= Non -~ Linear theory
+ T/n=8
(willis)
o8-
Q
+
106 |-
oS
| \
) ' 2

rs (%7;%)3

F1G. 2. Comparison of our results with Willis’s solution of

the nonlinear BGK model. Willis’s abscissae are measured

in terms of a mean free path corresponding to the average
temperature of equation (6.2).

«Takao's dota

Present theory

Fi1G. 3. Comparison with Takao’s experimental data.
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the numerical solution gives also an accurate
representation of the local values of density and
temperature. Typical examples of such profiles
are given in Figs. 4 and 5.

OGL—
A
07K
A3 =100
8 10
¥ (4 ol
05
B
0 3
c
Ot
o 3
u=x/8

FIG. 4. Profiles of the density perturbation for typical values
of the inverse Knudsen number §.

u=x/8

F1G. 5. Profiles of the temperature perturbation for typical
values of the inverse Knudsen number 4.

Concerning the half-space problem we evalu-
ated the temperature and density profiles by the
finite difference method ; the deviations from the
linear asymptotic behaviour are shown in Fig. 6.
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F1G. 6. Profiles of the density and temperature perturbations
in the half-space problem.

The same calculation gave the following
—0-7319

values for y; (i = 1, 2):
1-2941. } (6.3)

By =
My =
Therefore the temperature-jump coefficient
turns out to be:
a =3n" Y2(12941) = {2 (111682) (6.4
The value obtained by the variational method
is by equation (5.23):
a =2 (1-1621). (6.5)
The discrepancy is less than 0-53 per cent.
The value 1-173 obtained by Welander [9]

differs from equation (6.4) by 0-43 per cent and
from equation (6.5) by 0-86 per cent.

7. CONCLUDING REMARKS
A typical linearized problem of kinetic theory
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has been solved by two different methods, based
respectively on a differencing procedure and a
variational approach. The agreement between
these results is good.

Since the BGK model has been used in place
of the true linearized Boltzmann equation, it is
pertinent to ask whether the change of the
collision term affects significantly the results.
Concerning this point, we can quote the result
that the most striking inaccuracy of the BGK
model, ie. the fact that the Prandtl number is
equal to 1 instead of %, has not very marked
influence on the results, although in the tran-
sition regime normal stresses are present, which
are certainly influenced by the value of the
Prandtl number. To be precise we can say* that
if a more sophisticated model with correct
Prandtl number is used, as proposed in refer-
ence [22], corrections to heat flux in the
transition regime are less than 0-5 per cent.

Therefore, the results for the BGK model
should be quite accurate also for Maxwell
molecules, unless higher order moments have an
improbable influence on the results.
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Résumé—On considere le transport de chaleur linéarisé entre deux plaques paralléles dans la gamme des
inverses du nombre de Knudsen allant de 0 4 10. Le modele de Bhatnagar, Gross et Krook est employé
et transformé en un couple d’équations intégrales pour la densité et la température. Ces équations sont
résolues numériquement. De plus, on fait un calcul variationnel de la solution en introduisant des fonctions
d’essai simples avec un principe variationnel convenable. Les résultats obtenus pour le flux de chaleur a
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'aide des deux méthodes sont comparés et ’on a constaté leur accord étroit (différence inférieure 4 0,5 pour
cent). Dans le cas limite du probléme du demi-espace, le coefficient de saut de température est évalué &
la fois numériquement et par un procédé variationnel. Ce dernier donne une valeur différant d’environ 0,5
pour cent de la valeur donnée par le premier procédé et d’environ 1 pour cent de la valeur obtenue
auparavant par Welander.
On a comparé avec les résultats de I'analyse non-linéaire de Willis, la solution linéarisée des quatre
moments et les résultats expérimentaux de Takao.

Zusammenfassung—Der linearisierte Wirmeiibergang zwischen zwei parallelen Platten wird behandelt
fiir Kehrwerte der Knudsenzahl von 0 bis 10. Das Modell von Bhatnagar, Gross und Krook wird beniitzt
und transformiert in eine Reihe von Integralgleichungen fiir die Dichte und Temperatur. Diese Gleichungen
werden numerisch geldst. Daneben ist eine Variationsrechnung fiir die Losung durchgefithrt durch
Einfiihrung einfacher Versuchsfunktionen in ein geeignetes Variationsschema. Die nach beiden Methoden
erhaltenen Ergebnisse fiir den Wirmestrom werden verglichen und es ergibt sich strenge Ubereinstimmung
(Abweichung weniger als 0,5 Prozent). Fiir den Grenzfall des Halbraumproblems ist der Koeffizient fiir
den Temperatursprung sowohl nach einem numerischen Verfahren als auch nach der Variationsmethode
berechnet. Letztere liefert einen Wert, der etwa 0,5 Prozent abweicht von jenem, der nach der erstgenannten
Methode ermittelt wird und etwa 1 §; Abweichung zu dem kiirzlich von Welander erhaltenen Wert aufweist.

Vergleiche wurden durchgefiihrt mit den Resultaten der nichtlinearen Analyse von Willis, der linearisier-

ten Losung mit vier Momenten und Takaos experimentellen Daten.

AHHOTanMA—PaccMaTpuBaeTcsa AMHEAPM3MPOBAHHAA 337a4a TemI0000MeHd Mewiy AByMH
napalllebHEMU IIACTHHAMY JUIA 0OpaTHHX 3HaveHu#t unmcen Kuyncena B guanasone ot 0
10 10. Ucnoasayerca mopens Bxarnarapa, I'pocca u Hpyka, koropas npeoGpasoBbIBaETCH
B CUCTEMY ABYX MHTErDAJBHHIX ypaBHEHMH AJIA MJIOTHOCTH M TeMIePATyphl. OTH YPaBHEHHUS
pewens yuciieHHo. KpoMe Toro, BHIIOJIHEH BapUALMOHHBL PACUeT PEIeHHA IyTeM BBEASHUA
NpOCTHIX TNMPOOHHX (YHKUMH B COOTBETCTBMU C BApPHMALMOHHEIM mpuHIMIoM. Ilposepeno
CpABHEeHME peayJIbTAaTOB, NMOJYYEHHBIX AIA TEIJIOBOT0 MOTOKA C IOMOLULIO STUX ABYX METO-
MOB, M HalifeHo MX Xopouee coorsercrBue (c oTKAOHeHuem He Goxee 0,5%). [Jdaa mpemes-
HOTO CJy4as 3ajaqyy B IOJYNPOCTPAHCTBe KODPOUUMEHT CKaYKa TEMIEpaTyp ONpeesserci
KaK YHCJEHHBM, TAK U BAPHALMOHHBLIM MeTOJOM. BapuanuouHBI MeToj jaeT 3HaveHue,
otnnvawouieecs Ha ~0,5% OT 3HAYEHUA, NOJAYIEHHOTO YUCICHHBIM MeTOJAOM, M HA ~19%, —
OT 3HAYEHMA YalaHjepa.

TIpoBeeHo cpaBHeHHe TOJIyYeHHBIX Pe3yJbTATOB € PE3yIbTATAMHM HEJIUHEHHOI0 AHAIUBA
Vuanuea, JAHEAPUSMPOBAHHLIM pelIEHMEM YeTHIPeX MOMEHTOB H DHCHEePHMEHTaJbHBIMU

JanubiMn Tarao.



